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Exact scaling properties of a hierarchical network model

Jae Dong Noh
Theoretische Physik, Universita¨t des Saarlandes, 66041, Saarbru¨cken, Germany

~Received 18 November 2002; published 21 April 2003!

We report on the exact results for the degreeK, the diameterD, the clustering coefficientC, and the
betweenness centralityB of a hierarchical network model with a replication factorM. Such quantities are
calculated exactly with the help of recursion relations. Using the results, we show that~i! the degree distribu-
tion follows a power lawPK;K2g with g511 ln M/ln(M21), ~ii ! the diameter grows logarithmically asD
; ln N with the number of nodesN, ~iii ! the clustering coefficient of each node is inversely proportional to its
degree,C}1/K, and the average clustering coefficient is nonzero in the infiniteN limit, and ~iv! the between-
ness centrality distribution follows a power lawPB;B22. We discuss a classification scheme of scale-free
networks into the universality class with the clustering property and the betweenness centrality distribution.
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A network structure of complex systems has been attr
ing much research interest@1#. Since the works in Refs.@2,3#,
it has been recognized that complex systems have neith
regular nor a random network structure. Instead, comp
networks found in various areas have a scale-free~SF! struc-
ture characterized with a power-law distribution of the d
gree, see Ref.@1#, and references therein. A possible mech
nism for the emerging SF structure is suggested by
Barabási-Albert ~BA! model @4#. However, the BA network
lacks the clustering property that is observed in many r
networks. To fill this gap, a hierarchical~H! network model
was introduced as a model for SF networks with a cluster
property @5#. It is observed that theH network displays a
scaling lawC;K21 between the clustering coefficientC of
a node and its degreeK and that the average value ofC does
not vanish in the infinite size limit. The clustering property
also observed in some metabolic networks@6#, which is re-
garded as an evidence for a hierarchical structure@5,7#.

On the other hand, the clustering property does not n
essarily imply a hierarchical structure. Some SF netw
models@8–11# have the clustering property, but it is not a
parent whether they have a hierarchical structure. Theref
it is desirable to study other scaling properties of theH net-
work model to establish the universality class for the hier
chical network. This is the purpose of the current work. W
derive analytically exact scaling laws for the degree distri
tion, the diameterD, the clustering coefficient~CC!, and the
betweenness centrality~BC! B @5#. The CC is a measure o
local connectivity or modularity, while the BC reflects a gl
bal property@12,13#. The scaling property of both quantitie
characterizes the universality class for theH network.

TheH network is characterized byG ~the number of gen-
erations! andM ~a replication factor! @5#. The network of the
Gth generation, denoted asNG , hasN5MG nodes, which
will be labeled by the coordinateG tuple of integers@xG#
[@xG•••x1# with 0<xi,M . The network is defined recur
sively. The first generation consists of one central node@0#,
which will be referred to as a hub, and (M21) peripheral
nodes@y# with 1<y,M . All nodes are fully connected with
each other. Suppose one hasNG21, each node of which is
assigned to a coordinate@xG21#. In the next generation
(M21) copies are added to the network and all their peri
eral nodes are connected to the hub of the original u
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Nodes in the original unit are assigned to@0xG21# and the
copies to @yxG21# with y51, . . . ,M21, respectively. It
leads to the networkNG . Nodes@yG•••y1# with yiÞ0 for
all i are the peripheral nodes and@0G# is the hub ofNG .

With the coordinate system, geometrical properties of
network can be studied combinatorially. In general, the no
connectivity follows the rule:

Rule ~1!

@xG•••xl 11yl•••y1#↔@xG•••xl 11yl•••yk110k#

~1< l<G and 1<k< l !.

Rule ~2!

@xG•••x2y1#↔@xG•••x2y18# for y1Þy18 .

Above and hereafter, we usex for a dummy variable ranging
from 0 to (M21) and y for one ranging from 1 to (M
21). Rule~1! comes from the fact that all peripheral nod
of Nk are connected to the hub0k during the replication and
Rule ~2! from the fact that all peripheral nodes ofN1 are
fully interconnected.

For a convenience, we classify nodes into four sets:~a! P
for peripheral nodes@yG•••y1#, ~b! LPl ~stands for locally
peripheral! (1< l ,G) for nodes of the form
@xG•••xl 120 yl•••y1#, ~c! LHl ~local hub! (1< l ,G) for
nodes of the form@xG•••xl 12yl 110l #, and~d! H for the hub
@0G#. The sizeS of each set is given in Table I.

Degree distribution. Using the connection rules, one ca
easily enumerate the degree, which is the number of ne
bors, of each node. All nodes in the same set have the s
degree, which are presented in Table I. The nodes inP andH
contribute to the degree distributionPK at isolated points of
K. For nodes inLPl , it is given by PK5M 2GSl uD l /DKl u
with D l 51 andDKl[Kl 112Kl51. UsingK andS in Table
I, we find thatPK;exp@K ln(121/M )#. On the other hand
nodes inLHl haveKl;(M21)l and Sl;M 2 l . Hence, the
degree distribution follows a power lawPK;K2g for M
.2 with g511 ln M/ln(M21). The nodes inLHl have
larger degrees than those inLPl . Therefore, the total degre
distribution follows the power law with the exponentg in the
tail region. In particular, the hub has the largest degr
which scales asKhub;N1/(g21).
©2003 The American Physical Society03-1
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TABLE I. The degreeK, the clustering coefficientC, the partial betweenness centralityB0, and the betweenness centralityB of a node
in each set and the number of nodesS in each set.

Set S K C B0 B

P (M21)G G1(M22)
~M22!~2G1M23!

~G1M22!~G1M23! S M

M21D
G21

21 .2MGSM~M221!

M311
DHS M

M21DG21

21J
LPl (M21)lMG2( l 11) l 1(M22)

~M22!~2l1M23!

~l1M22!~l1M23! S M

M21D
l21

21 .2MGHS M

M21D
l21

21J for l !G

LHl (M21)MG2( l 11) (
n51

l

~M21!n
~M22!

(n51
l ~M21!n21

Ml 2121 .2MG(Ml 2121) for l!G

H 1 (
n51

G

~M21!n (M22)

(n51
G (M21)n21

0 .H 2

M11
1

M2~M22!

M221
ln

M2

M22M11
JM2G
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Shortest path and diameter. We first consider the shortes
path from an arbitrary node@xG•••x1# to the hub@0G#. One
can reach the hub by flipping the coordinate using Rules~1!
and ~2! successively. The shortest path has the minim
number of steps, which is called the distance. Note tha
step using Rule~2! always leads to a detour. Hence, it mu
not be used in finding the shortest path to the hub. Follow
Rule ~1!, one may flip theconsecutivedigits ~including x1)
that are all zero to nonzero values, or vice versa. The wh
consecutive digitsxi•••x1 with x1< j < i50 (xi< j < iÞ0) and
xi 11Þ0 (xi 1150) will be referred to as a zero~nonzero!
domain. Then, one can reach the hub in minimal steps
flipping a zero or nonzero domain to a nonzero or zero
main successively. The domain size increases at each
until one reaches the hub, a zero domain of sizeG. Since a
zero domain can be flipped to any nonzero domain, the sh
est path has a large degeneracy in general.

The process resembles domain coarsening in magn
systems. To complete this analogy, we map the coordin
@xG•••x1# onto a spin state of the (Q5M )-state Potts mode
in one-dimensional lattice of sizeG and assign the energ
with the Hamiltonian

H5(
i 51

G

$12d„d~xi ,0!,d~xi 11,0!…%, ~1!

whered(•••) is the Kronecker delta symbol andxG11[0 is
a fixed ghost spin. Then the distance between a node to
hub is given by the energy of the spin state. Therefore,
mean node-to-hub distance is given by the average energ
the spin system in the infinite temperature limit:DH(G)5
2@] ln Z(b;G)/]b#b50 with the partition functionZ(b;G)
5(xG

e2bH[xG] . It can be calculated using a transfer mat
method. After some algebra, we obtain that

DH~G!5
2~M21!

M2
G1

~M21!~M22!

M2
. ~2!

The shortest path between arbitrary nodes@xG#
5@xxG21# and@xG8 #5@x8xG218 # can be found recursively. I
xÞx8, all paths connecting them pass through the hub@0G#.
So, the shortest path is given by a shortest path from
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node to@0G# followed by a shortest path from@0G# to the
other. If x5x8, one can restrict the shortest path within
subnetwork of all nodes@x9xG219 # with x95x for a path
utilizing other nodes withx9Þx does not reduce a pat
length @14#. Note that the subnetwork with all links to othe
nodes inNG disabled has that same structure asNG21.
Therefore, the distance satisfies the recursion relation

d~@xG#,@xG8 # !5d8~x,x8!$d~@xG#,@0G# !1d~@xG8 #,@0G# !%

1d~x,x8!d~@xG21#,@xG218 # !, ~3!

whered8(•••)[12d(•••) in shorthand notation. Summin
up over all node pairs, we obtain the recursion relat
D(G)52M 21(M21)DH(G)1M 21D(G21) for the diam-
eter ~mean node-to-node distance! with the solution

D~G!5
4~M21!G

M2
1

2~M23!

M
2

~M22M24!

MG11
. ~4!

In the infiniteN5MG limit, we find thatD.2DH and that
the diameter scales logarithmically withN. It is a character-
istic of the hierarchical network. For conventional~nonhier-
archical! SF networks, the diameter scales sublogarithm
cally for g<3 @15,16#.

Clustering coefficients. The CC of a node withK neigh-
bors is given byC52Ne /K(K21), whereNe is the number
of existing edges betweenK neighbors. Using the connectio
rules, it is straightforward to calculate the CC of each no
Nodes in the same set have the same value ofC, which are
presented in Table I.

Using the results in Table I, the degree dependence of
CC is easily obtained. For nodes inP and LPl , we obtain
that C(K)5(M22)(2K2M11)/K(K21) with M21
<K<G1(M22). So, for largeK@M , their CC’s are in-
versely proportional to the degrees,C(K).2(M22)/K.
The CC’s of nodes inLHl and the hub are exactly given b
C(K)5(M22)/(K21). The scaling lawC.cK21 holds
for both cases, but the coefficientc differs by a factor of 2
~cf. Fig. 2~b! in Ref. @5#!.
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The average CC is given by C̄[M 2G(SPCP
1( l(SLPlCLPl1SLHlCLHl)1SHCH). In the infinite size limit
(G→`), it converges to anonzerovalue

C̄5S 12
2

M D(
l 51

`
~2l 1M23!~121/M ! l

~ l 1M22!~ l 1M23!

1S 12
1

M D(
l 51

`
~M22!2

Ml~~M21! l 1122M13!
. ~5!

Numerically C̄50.719 282 . . . and 0.741 840 . . . for M

54 and 5, respectively.C̄ converges to 1 asM→`.
Betweenness centrality. The BC of a node is the sum o

weights of the shortest paths between all node pairs that
through the node. For a given node pair, all the degene
shortest paths connecting them are weighted with the inv
of the degeneracy. First of all, we calculate a so-called pa
BC B0, which is obtained from a partial sum over all th
shortest paths between the hub and the others. It is calcu
easily, since all the shortest paths can be constructed u
the domain-coarsening picture.

Again, each node in the same set has the same valu
B0. ~a! A nodeu5@yG•••y1# in P may belong to a shortes
path to the hub from nodes@yG•••yl 120xl8•••x18# with 0
< l<G22 and arbitraryxi8 . The domain-coarsening proce
leads them to@yG•••yl 120l 11# at an intermediate step
Then, the zero domain0l 11 flips to a nonzero domain in th
next step with probability (M21)2( l 11) passing through the
node u. Hence, each node contributes (M21)2( l 11)

to Bu
0 . Summing up all contributions, we obtai

the result in Table I.~b! A node @xG•••xl 120yl•••y1#
in LPl may belong to the shortest path from nod
@xG•••xl 120yl•••ym120xm8 •••x18# with 0<m< l 22 and
arbitrary xi8 to the hub. Following the same idea as in~a!,
one can easily obtainB0, see Table I.~c! A node u
5@xG•••xl 12yl 110l # in LHl belongs to ‘‘all’’ the shortest
paths from nodes@xG•••xl 12yl 110xl 218 •••x18# with arbi-
trary xi8 , except foru itself. So, Bu

05Ml 2121. ~d! Triv-
ially, B050 for the hub.

By eliminating the parameterl in Table I, we obtain that
B0(K)5@M /(M21)#K2M11 for nodes in setLPl . It is di-
verging exponentially withK. On the other hand,PK for
nodes inLPl decays exponentially. So,PB0 decays algebra
ically. Explicitly, it is obtained from PB0

5M 2GSl uD l /DBl
0u, which yields that

PB05S M21

M D 2 1

~B011!2
. ~6!

We obtain the relation B0(K)5211M 21@11K(M
22)(M21)21#g21 for nodes in the setLHl . So the distri-
bution is given by

PB05
1

M2

1

~B011!2
. ~7!
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Therefore, the partial betweenness centrality has the po
law distribution with the exponent 2.

The mean node-to-node distance was obtained using
mean node-to-hub distance. We apply a similar idea for
BC. Introduce a character functionxG(@xG8 #,@xG9 #;@xG#) to
denote the fraction of paths passing through@xG# among all
the shortest paths between@xG8 # and @xG9 # in NG . The @xG#
dependence will be assumed implicitly. Then, the BC o
node @xG#5@xxG21# can be written formally asB[xG]

5(x
G8 ,x

G9
xG(@xG8 #,@xG8 #). The hub will be considered sepa

rately later, and we assume that@xG# is not the hub for the
time being. Decompose the sum(x

G8
into (x8(x

G218 and

similarly for xG9 . When x8Þx9, all the shortest paths be
tween@x8xG218 # and @x9xG219 # pass through the hub, whic
yields that xG(@x8xG218 #,@x9xG219 #)5xG(@x8xG218 #,@0G#)
1xG(@x9xG219 #,@0G#). When x85x9 and @xG# is not the
hub, the summands are nonzero only whenx85x95x. Using
these properties, we obtain that

B[xG]52~M21!MG21B[xG]
0

1 (
xG218 ,xG219

xG~@xxG218 #,@xxG219 # !. ~8!

One might be tempted to identify the second term
B[xG21] , i.e., the BC defined onNG21. However, this is not

correct for xÞ0, since some pairs of@xG218 # and @xG219 #
may have degenerate shortest paths passing through the
@0G# that is not present atNG21. This was explained when
we discussed the diameter. For example,@y1111# and
@y1222# with nonzero y are connected via@y1000# and
@y0000#, and also via@00000#, so each path has the weigh
1/3. However, if one ignores the path via@00000#, the other
paths would have weight 1/2, and hence the nodes@y1000#
and @y0000# would have larger value of the BC.

Therefore, the second term in Eq.~8! should be written as
a sum ofB[xG21] and a quantity that compensates for t
change in the degeneracy of the shortest paths. As the
ample shown, the compensation is necessary only for no
of the form @xG#5@yG•••yl 110l # with 1< l ,G. For such
nodes, after enumerating all degeneracy carefully, Eq.~8!
becomes

B[xG]52~M21!MG21B[xG]
0 1B[xG21]

2 (
k51

l 21
~M22!~M21!kM2(l 2k)

~G2 l 1k!~G2 l 1k21!
. ~9!

The hub gains from such degenerate shortest paths, w
lead to a similar recursion relation

B[0G]5~M21!~M2G2122MG21!1B[0G21]

1~M22!M2G (
k52

G21
~M21!k

kM2k
. ~10!

For other nodes, we have the simple relation

B[xG]52~M21!MG21B[xG]
0 1B[xG21] . ~11!
3-3
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With the recursion relations, we now readily calculate t
BC of all the nodes exactly. Since the exact expressions
lengthy, we present only the leading-order contribution in
largeG limit in Table I. Note thatB.2MGB0 for most nodes
in LPl and LHl in the largeG limit. The proportionality
relation implies that the BC follows the same power-law d
tribution asB0:

PB;B22. ~12!

Summary and discussions. We have studied the exact sca
ing properties of theH network introduced in Ref.@5#. We
have shown that theH network has the clustering propert
The average value of the CC is nonzero in the infinite n
work size limit and the CC exhibits the scaling lawC
;K2b with b51. We have also shown that the BC follow
the power-law distributionPB;B2h with h52. Both scal-
ing properties characterize theH network model.

The BC proved to be useful in classifying SF networ
into the universality class. The BC distribution exponent
universal and has the value eitherh.2.2 in the class I or
h.2.0 in the class II@13#. Combining the scaling propertie
of the CC and the BC, we suggest that there exist f
classes, that is, I-C, I-NC, II-C, and II-NC~C for clustered
and NC for nonclustered networks! @17#. The H network
model then belongs to the class II-C. The Internet at
autonomous system level and some metabolic network
archaea display both scaling behaviors withb.1.0 @5# and
h.2.0 @13#. So they belong to the same class II-C, which
a stronger evidence for a hierarchical structure@5#. The BA
network with m51 @4# and the deterministic tree networ
@18# haveC50 andh52 @19#, thus they are members of th
class II-NC. The BA network withm>2 has vanishing CC
@9,10# andh.2.2 @13#, and belongs to the class I-NC.

Literatures suggest that the metabolic networks of ba
ria and eukaryotes@13,7# and the co-authorship network i
-
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the field of neuroscience@13,20# might belong to the class
I-C. With the existence of the class I-C, the clustering pro
erty does not necessarily imply the hierarchical structu
Therefore, it is important to establish the class I-C firm
Further studies on the BC distribution in model networ
with the clustering property, such as the Holme-Kim mod
@8# and Klemm-Eguı´luz model @9#, are required. Furthe
studies are also necessary to reveal the similarity or diss
larity between the metabolic networks of archaea and th
of bacteria and eukaryotes, which have different BC dis
butions.

Gohet al. @13# suggested that the topology of the shorte
pathways be a universal characteristic of SF networks. T
found a chainlike structure for networks in the class II (h
52). It was presumed that the chainlike structure leads
linear mass-distance relationm(d).Ad, wherem(d) is the
mean number of nodes along all the shortest paths betwe
node pair separated by a distanced. We also found that the
shortest pathways of theH network have a chainlike struc
ture. For example, a set of all shortest paths from@001010#
to the hub in N6 is given by @001010#→1@00101y#
→2@00103#→3@001yyy#→4@06# with arbitrary nonzeroy’s.
It has a chainlike structure, but steps 1 and 3 introduce bl
whose size increasesexponentiallyas one proceeds. W
could show thatm(d), averaged over all nodes separated
the distanced from the hub, satisfies an inequalitym(d)
>a(M21)d with a positive constanta @21#. So a topological
characterization other than the mass-distance relation is
essary to characterize the chainlike structure observed in
class II-C.

This work has been financially supported by the Deuts
Forschungsgemeinschaft~DFG!. The author thanks H
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