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Exact scaling properties of a hierarchical network model
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We report on the exact results for the degieethe diameteD, the clustering coefficien€, and the
betweenness centralif$ of a hierarchical network model with a replication factdr Such quantities are
calculated exactly with the help of recursion relations. Using the results, we sho)ttre degree distribu-
tion follows a power lawP,~K ™7 with y=1+In M/In(M—1), (ii) the diameter grows logarithmically &
~In N with the number of nodel, (iii) the clustering coefficient of each node is inversely proportional to its
degreeC=1/K, and the average clustering coefficient is nonzero in the infiwiienit, and (iv) the between-
ness centrality distribution follows a power laRg~B~2. We discuss a classification scheme of scale-free
networks into the universality class with the clustering property and the betweenness centrality distribution.
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A network structure of complex systems has been attractNodes in the original unit are assigned[@xg_,] and the
ing much research interefst]. Since the works in Ref$2,3],  copies to[yxg_;] with y=1,... M—1, respectively. It
it has been recognized that complex systems have neitherl@ads to the networkVs . Nodes[yg- - -y;] with y;#0 for
regular nor a random network structure. Instead, complexll i are the peripheral nodes apds] is the hub of\f.
networks found in various areas have a scale-{8#® struc- With the coordinate system, geometrical properties of the
ture characterized with a power-law distribution of the de-network can be studied combinatorially. In general, the node
gree, see Refl], and references therein. A possible mecha-connectivity follows the rule:
nism for the emerging SF structure is suggested by the Rule (1)
Barabai-Albert (BA) model[4]. However, the BA network
lacks the clustering property that is observed in many real e Xieayi---Yal = lXe X - Vi 10
networks. To fill this gap, a hierarchicéf) network model
was introduced as a model for SF networks with a clustering
property[5]. It is observed that thél network displays a Rule (2)
scaling lawC~K ! between the clustering coefficieGtof
a node and its degré€ and that the average value Gfdoes [Xg: - Xay1]le=[Xg - -X2y1] for y17y;.
not vanish in the infinite size limit. The clustering property is
also observed in some metabolic netwof&$ which is re- Above and hereafter, we uggor a dummy variable ranging
garded as an evidence for a hierarchical struckrd. from 0 to (M—1) andy for one ranging from 1 to M
On the other hand, the clustering property does not nec=1). Rule(1) comes from the fact that all peripheral nodes
essarily imply a hierarchical structure. Some SF networkof Ny are connected to the hulg during the replication and
models[8—11] have the clustering property, but it is not ap- Rule (2) from the fact that all peripheral nodes af, are
parent whether they have a hierarchical structure. Thereforduylly interconnected.
it is desirable to study other scaling properties of theet- For a convenience, we classify nodes into four s@ts’
work model to establish the universality class for the hierarfor peripheral nodegyg- - -y;], (b) LPI (stands for locally
chical network. This is the purpose of the current work. Weperipheral (1<I<G) for nodes of the form
derive analytically exact scaling laws for the degree distribu{Xg- - - X, +20y,- - -y1], (¢) LHI (local hub (1=<I<G) for
tion, the diameteD, the clustering coefficienCC), and the  nodes of the fornixg- - - X, 1,y +10/], and(d) H for the hub
betweenness centrali§8C) B [5]. The CC is a measure of [Og]. The sizeS of each set is given in Table I.
local connectivity or modularity, while the BC reflects a glo-  Degree distribution Using the connection rules, one can
bal property{12,13. The scaling property of both quantities easily enumerate the degree, which is the number of neigh-
characterizes the universality class for tHenetwork. bors, of each node. All nodes in the same set have the same
TheH network is characterized bg (the number of gen- degree, which are presented in Table |. The nodésandH
eration$ andM (a replication factor[5]. The network of the contribute to the degree distributid? at isolated points of
Gth generation, denoted &g, hasN=M©® nodes, which K. For nodes inLPl, it is given by Px=M~CS|AI/AK,|
will be labeled by the coordinat& tuple of integerd xg] with Al=1 andAK,=K,, ;—K,=1. UsingK andSin Table
=[Xg-*-X¢] with 0=x;<M. The network is defined recur- |, we find thatPx~exgdKIn(1—-1/M)]. On the other hand,
sively. The first generation consists of one central niddle  nodes inLHI haveK,~(M—1)" andS~M~'. Hence, the
which will be referred to as a hub, andA(—1) peripheral degree distribution follows a power laR~K™? for M
nodedly] with 1<y<M. All nodes are fully connected with >2 with y=1+InM/In(M—1). The nodes inLHl have
each other. Suppose one h&g_;, each node of which is larger degrees than thoselifl. Therefore, the total degree
assigned to a coordinafexg_¢]. In the next generation, distribution follows the power law with the exponenin the
(M —1) copies are added to the network and all their periphtail region. In particular, the hub has the largest degree,
eral nodes are connected to the hub of the original unitwhich scales a&j,,,~NY("~1).

(1=<I=<G and I1=k=lI).
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TABLE |. The degreeK, the clustering coefficient, the partial betweenness centralg§, and the betweenness centralgyof a node

in each set and the number of nod&s each set.

Set S K c o S
P (M-1)° G+(M-2) (M-2)(2G+M—3) M G‘l_l o MMZ=D)\[[ ™ G*l_l
(GFM—2)(G+M-3)  (M—1 arverenl v,
- M—2)(2l+M—3) M |-l M -1
L M-1)ME- (D |+ (M-2 ( . —~oM© _ <
( : ( ) (I+M=2)(I+M—3) M—1 1 MAT—T 1 for 1<G
: (M-2)
i (M-DMEEE 3 M- S M1 M1 ~2MS(M'1-1) for I<G
n=1 Enzl(l\/l—l) -1
G
H ! Sm-r M72) 0 2 w2 ome ]
n=1 Se(M-1)"-1 M1 M2—1  MZ—M+1

Shortest path and diametetVe first consider the shortest node to[05] followed by a shortest path frofi0g] to the

path from an arbitrary nodexg- - - X1] to the hulf O5]. One
can reach the hub by flipping the coordinate using Rules

other. If x=x", one can restrict the shortest path within a
subnetwork of all node$x”xg_;] with x"=x for a path

and (2) successively. The shortest path has the minimunytjlizing other nodes withx”#x does not reduce a path
number of steps, which is called the distance. Note that gngth[14]. Note that the subnetwork with all links to other
step using Rulé2) always leads to a detour. Hence, it must hodes inA; disabled has that same structure /&g_ ;.
not be used in finding the shortest path to the hub. Followingrnerefore, the distance satisfies the recursion relation

Rule (1), one may flip theconsecutiveligits (including x,)

that are all zero to nonzero values, or vice versa. The whole

consecutive digit;- - - X; with X;<;<j=0 (Xj<j<;#0) and
Xj+170 (Xi;1=0) will be referred to as a zerthonzerg

d([xcL.[xc]) = 8" (x,x"){d([xc].[0c]) +d([xc].[0c ]}
+8(x,x)d([Xg-1].[Xg-1]), ()

domain Then, one can reach the hub in minimal steps by
flipping a zero or nonzero domain to a nonzero or zero do-

main successively. The domain size increases at each fl

until one reaches the hub, a zero domain of $zeSince a

zero domain can be flipped to any nonzero domain, the shor

est path has a large degeneracy in general.

I\Hhere&(- --)=1-4(- - -) in shorthand notation. Summing

up over all node pairs, we obtain the recursion relation
P(G)=2M *(M—1)Dy(G)+M 'D(G—1) for the diam-
eter(mean node-to-node distanasith the solution

The process resembles domain coarsening in magnetic

systems. To complete this analogy, we map the coordinate

[Xg- - - X1] onto a spin state of the&)= M)-state Potts model
in one-dimensional lattice of siz& and assign the energy
with the Hamiltonian

G

H:i; {1-8(5(x:,0),8(x 11,0}, (1)

whered(- - -) is the Kronecker delta symbol axg , ;=0 is

4M-1)G 2(M-3 M2—M—4
D(G):(Mz) +(M ) )

4

MG+1

In the infinite N=M¢ limit, we find thatD=2D,, and that
the diameter scales logarithmically with It is a character-
istic of the hierarchical network. For conventiofabnhier-
archica) SF networks, the diameter scales sublogarithmi-
cally for y<3 [15,16.

a fixed ghost spin. Then the distance between a node to the Clustering coefficientsThe CC of a node withK neigh-
hub is given by the energy of the spin state. Therefore, thgors is given byC=2N,/K(K—1), whereN, is the number
mean node-to-hub distance is given by the average energy gf existing edges betweegfineighbors. Using the connection

the spin system in the infinite temperature linity,(G) =
—[dInZ(B,G)/dB]g-o With the partition functionZ(s3;G)

rules, it is straightforward to calculate the CC of each node.
Nodes in the same set have the same valu€,afhich are

=ExGe‘5H[XG]. It can be calculated using a transfer matrix presented in Table I.

method. After some algebra, we obtain that
2(M—1 M—-1)(M-2
( ) .- ( )( ) _
M?2 M?2

Du(G)= )

The shortest path between arbitrary nodé¢gg]
=[XxXg_1] and[x5]=[x'x5_,] can be found recursively. If
x#x', all paths connecting them pass through the [HigJ.

Using the results in Table |, the degree dependence of the
CC is easily obtained. For nodes hand LPI, we obtain
that C(K)=(M—-2)(2K—-M+1)/K(K—1) with M—-1
=K=G+(M-2). So, for largeK>M, their CC’s are in-
versely proportional to the degree€(K)=2(M—2)/K.

The CC’s of nodes il.HI and the hub are exactly given by
C(K)=(M—2)/(K—1). The scaling lawC=cK~! holds
for both cases, but the coefficieatdiffers by a factor of 2

So, the shortest path is given by a shortest path from on&f. Fig. 2b) in Ref.[5]).
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Therefore, the partial betweenness centrality has the power-
law distribution with the exponent 2.

The mean node-to-node distance was obtained using the
mean node-to-hub distance. We apply a similar idea for the
BC. Introduce a character functiops([xs],[Xg];[Xc]) to
denote the fraction of paths passing throligh] among all
the shortest paths betwegx;] and[xg] in M. The[xg]
dependence will be assumed implicitly. Then, the BC of a

The average CC is given byC=MS(S,C,
+2(SpCrp+ SumCrin) + SuCr) - In the infinite size limit
(G—w®), it converges to aonzerovalue

)

i3

I=1

(21+M—=3)(1—1/M)'
(I1+M—=2)(I+M-3)

+(1—i)§ (M—2)2 G node [Xg]=[XXg_1] can be written formally asBiy

M/=1 MI(M—1)'"1—2M +3) =3y xxc([Xsl.[xg]). The hub will be considered sepa-
rately later, and we assume that;] is not the hub for the

Numerically C=0.71928 ... and0.74184 ... for M  time being. Decompose the sully into 2,2, and

=4 and 5, respective@ converges to 1 abl — . similarly for xg. Whenx’#x", all the shortest paths be-
Betweenness centralitfhe BC of a node is the sum of tween[x’x;_;] and[x"x¢g_,] pass through the hub, which

weights of the shortest paths between all node pairs that pagelds that xg([X'Xg_11,[X"%XG_11) = xc([X'X5-11.[0c])

through the node. For a given node pair, all the degenerate ys([X"xs_11,[0c]). When x’=x" and [xg] is not the

shortest paths connecting them are weighted with the inversgub, the summands are nonzero only whkés x”=x. Using

of the degeneracy. First of all, we calculate a so-called partiahese properties, we obtain that

BC B°, which is obtained from a partial sum over all the B —2(M—1)MC1g0

shortest paths between the hub and the others. It is calculated xs) = 2 ) [xGl

easily, since all the shortest paths can be constructed using

the domain-coarsening picture.

Again, each node in the same set has the same value of
BC. (@ Anodeu=[yg---y;] in P may belong to a shortest

path to the hub from noddsyg- - -y, ,0X%/ - --x;] with O

<|<G-—2 and arbitrary; . The domain-coarsening process Bixg_
leads them to[yg---y,.20.1] at an intermediate step.

+ X

r "
Xg-1%G-1

®

Xo([XXg_1].[XXG_1]).

One might be tempted to identify the second term as
E i.e., the BC defined oNg_;. However, this is not

correct forx#0, since some pairs dixg_,;] and [Xg_,]

Then, the zero domaiy , ; flips to a nonzero domain in the may have degenerate shortest paths passing through the hub
next step with probability 1 — 1)~ ('*1) passing through the [0Og] that is not present at/s_;. This was explained when

node u. Hence, each node contributesM 1) (1)
to BS. Summing up all contributions,
the result in Table I.(b) A node [Xg- - X/ +20y;- - -Yq]

we discussed the diameter. For examplgl111] and

we obtain [Y1222] with nonzeroy are connected vidy1000] and

[y0000], and also vig 0000q, so each path has the weight

in LPI may belong to the shortest path from nodesl/3. However, if one ignores the path {i@000Q, the other

[Xg X1 420Y" Y 20X/, - -X;] with O=m=<I|-2 and
arbitrary x{ to the hub. Following the same idea as(a,

one can easily obtairB°, see Table I.(c) A node u

=[Xg* - X1+2Y1+10/] in LHI belongs to “all” the shortest
paths from nodeg§Xg- - X 42Y+10%/_1- - -X1] with arbi-

trary x/ , except foru itself. So,B%=M'"*—1. (d) Triv-

ially, B°=0 for the hub.

By eliminating the parametdrin Table |, we obtain that
BO(K)=[M/(M—1)]*"M*1 for nodes in sel.ll. It is di-
verging exponentially withK. On the other handPy for
nodes inLPl decays exponentially. S&go decays algebra-

ically.  Explicitly, it is obtained from Pgo
=M ~CS|AI/AB?|, which yields that
b ( M — 1) 2 1 ©
UM (B
We obtain the relation B%(K)=—1+M {1+K(M

—2)(M—1)"1]7"1 for nodes in the setHl. So the distri-
bution is given by

1

1
Ppo= — —
B M2 (B%+1)2

()

paths would have weight 1/2, and hence the nggd€900]
and[y000Q] would have larger value of the BC.

Therefore, the second term in E&) should be written as
a sum OfB[xG,ll and a quantity that compensates for the

change in the degeneracy of the shortest paths. As the ex-
ample shown, the compensation is necessary only for nodes
of the form[xg]=[Yg- - - Y1+10/] with 1<I<G. For such
nodes, after enumerating all degeneracy carefully, [BY.
becomes

Bl =2(M—1)M® 1B}

[xgl + B[Xefl]

-1 (M_z)(M_l)kMza—k)
&L (G=1+K)(G—T+k—-1)

9
The hub gains from such degenerate shortest paths, which
lead to a similar recursion relation

Blog=(M—1)(M?®71=2M®" 1) +Bq_

1

G-1 Kk
(M—-1)
+(M=2)M?€ > ——— 10
( ) kgz kM2 (10
For other nodes, we have the simple relation
— G—-1Rr0
Bl =2(M—=1)MC 7B} 4 +Bp - (11)
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With the recursion relations, we now readily calculate thethe field of neurosciencgl3,2(0 might belong to the class
BC of all the nodes exactly. Since the exact expressions afeC. With the existence of the class I-C, the clustering prop-
lengthy, we present only the leading-order contribution in theerty does not necessarily imply the hierarchical structure.
largeG limit in Table I. Note thaB=2M®B° for most nodes  Therefore, it is important to establish the class I-C firmly.
in LPI and LHI in the largeG limit. The proportionality  Further studies on the BC distribution in model networks
relation |mpIIeS that the BC follows the same pOWEI’-'aW dlS'WIth the C|ustering property, such as the Holme-Kim model
tribution asB®: [8] and Klemm-EgUuz model [9], are required. Further

P.~B 2. (12) stu_dies are also necessary_to reveal the similarity or dissimi-
larity between the metabolic networks of archaea and those

Summary and discussiand/e have studied the exact scal- of bacteria and eukaryotes, which have different BC distri-
ing properties of thed network introduced in Refl5]. We  butions.
have shown that thel network has the clustering property: ~ Gohet al.[13] suggested that the topology of the shortest
The average value of the CC is nonzero in the infinite netpathways be a universal characteristic of SF networks. They
work size limit and the CC exhibits the scaling la@  found a chainlike structure for networks in the class #l (
~K~# with 8=1. We have also shown that the BC follows =2). It was presumed that the chainlike structure leads to a
the power-law distributiolPg~B~ 7 with »=2. Both scal- linear mass-distance relation(d)=Ad, wherem(d) is the
ing properties characterize tiénetwork model. mean number of nodes along all the shortest paths between a
The BC proved to be useful in classifying SF networksnode pair separated by a distarttéWe also found that the
into the Universality class. The BC distribution eXponent iSShortest pathways of thid network have a chainlike struc-
universal and has the value eithgr=2.2 in the class | or  yre. For example, a set of all shortest paths ff@0101q

7=2.0 in the class I[13]. Combining the scaling properties {5 the hub in N, is given by [001010—1[0010Y/]

of the CC and the BC, we suggest that there exist four_ ,rq01g 001 0.1 with arbitrary nonzero/’s
classes, that is, I-C, I-NC, II-C, and II-NCC for clustered — 3] 3 001yyy] =4[ Oc] Y ys.

It has a chainlike structure, but steps 1 and 3 introduce blobs
and NC for nonclustered netwojkel7]. The H network whose size increasesxponentiallyas one proceeds. We

model then belongs to the class II-C. The Internet at the
. uld show thatn(d), averaged over all nodes separated by
autonomous system level and some metabolic networks cﬁ?

archaea display both scaling behaviors wik1.0[5] and € distan%ed'from th?. hub, satisfies an inequalim(@)
7=2.0[13]. So they belong to the same class II-C, which isza('\/I —1)" with a positive constard [21]. So a topological

a stronger evidence for a hierarchical structi§k The BA characterization other than the mass-distance relation is nec-
network with m=1 [4] and the deterministic tree network €SS&rY to characterize the chainlike structure observed in the

[18] haveC=0 and#=2 [19], thus they are members of the class II-C.

class II-NC. The BA network witm=2 has vanishing CC This work has been financially supported by the Deutsche

[9,10] and »=2.2[13], and belongs to the class I-NC. .
Literatures suggest that the metabolic networks of bactel_:orschungsgemelnschaf(tDFG). The author thanks H.

ria and eukaryotefl3,7] and the co-authorship network in Rieger and B. Kahng for useful discussions.
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